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1. INTRODUCTION 

In recent years, AI systems have been extensively researched to support medical professionals in 
diagnostic processes [1]. While state-of-the-art methods show promising results in experimental 
settings [2,3], their application in real-world clinical environments faces several challenges [4]. In 
clinical dermatology, visual features are crucial for assessing the risk of skin lesions. However, 
image-based classification methods encounter significant difficulties in clinical scenarios, primarily 
due to sample variance in captured images. Environmental factors, such as lighting conditions, can 
introduce noise and artifacts that affect the final representation [5]. Lighting variations, influenced 
by indoor/outdoor settings, time of day, and geographical location, can alter the perceived color of 
lesions—a critical feature for determining malignancy or benignity. 

 

Color Constancy 

As an alternative solution, color constancy is the ability to measure object colors independently of 
the light source, ensuring consistent color representation across varied lighting conditions. This 
consistency is critical in clinical dermatology, as variations in captured lesion colors can impact key 
features used to assess malignancy. Despite its importance, most studies based on deep learning 
either do not utilize color constancy pre-processing or fail to disclose its use, although it is 
considered a promising approach for handling variations in image captures. 
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As Goyal et al. [6] indicate, publicly available clinical and dermoscopic datasets often contain 
images acquired under diverse settings, and inconsistencies in scene illumination can reduce AI 
algorithm performance. Techniques like shades of gray or max-RGB [7,8] are examples of color 
constancy methods that can enhance algorithmic accuracy. Figure 1 illustrates how color 
constancy can normalize the digital representation of lesions, improving the reliability of diagnostic 
models. 

 

 

Figure 01 - Shadow of gray pre-processing is used to normalize the illumination and lighting effect on dermoscopic skin 
lesion images. Figure obtained from [1]. 

 

2. RELATED WORKS 

To investigate how color generalization is applied in dermatology imagery, we conducted a brief 
literature review on preprocessing techniques, with a focus on color constancy algorithms that 
3.6address lighting variations. Barata et al. [7] outline four primary color constancy techniques 
widely used in dermatology, serving as foundational references for studies employing traditional 
learning algorithms. In these methods, the illuminant components ( ) of an RGB image ( ) are 𝑒

𝑐
𝐼

defined as , allowing the computation of pixel values ( ) by adjusting each 𝑒 =  [𝑒
𝑟
,  𝑒

𝑔
,  𝑒

𝑏
]𝑇 𝑥

channel , based on the illuminant values, as described in the techniques below. 𝑐 ∈  (𝑟, 𝑔, 𝑏)
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- Gray world: Assumes that, on average, the image’s color should be a neutral gray if the 
illuminant were white, as shown in Equation 1. 
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- max-RGB: The brightness pixel in each color channel should ideally be a reflection of the 
illuminant color (Equation 2). 
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- Shades of Gray: Generalizes Gray World by using Minkowski norm parametrized by a 
value p (Equation 3). 
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- General Gray World: Extends the shades of gray by first smoothing the image with a 
Gaussian Filter (Equation 4). 
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Using functions defined in Equations 1–4, we transform the entire image ( ) by estimating the value 𝐼
of each illuminant component ( ); Based on these estimated coefficients, we model the 𝑒

𝑐

transformation using the von Kries diagonal model [9], adjusting each pixel to appear as it would 
under a canonical light source, assumed here to be ideal white light. 

In contrast, [10] proposes that the average edge difference within a scene is achromatic, 
introducing the gray-edge and higher-order gray-edge algorithms. Unlike the previously described 
algorithms, which are computed based on the zero-order structure of images, gray-edge 
techniques rely on the derivative structure of images (as shown in Equation 5). 
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Here,  is the parameter defining the order of the image structure, distinguishing gray-world from 𝑛
gray-edge. Gray-world operates on RGB values, while gray-edge utilizes spatial derivatives of 
different orders. The parameter  represents the Minkowski norm, which determines the relative 𝑝
weights of various measurements used to estimate the final illuminant color. Additionally, the 
parameter  represents the scale of local measurements. For first or higher-order estimations, this σ
local scale is combined with a differentiation operation, typically computed using the Gaussian 
derivative. 

Recent studies, such as [11], apply advanced heuristics to reduce variability in dermoscopy images 
while enhancing overall contrast. By utilizing learning algorithms like GAN Pix2Pix, the model 
combines generative capabilities with the ability to learn higher-order features specific to 
dermoscopic images. In this setup, the generator employs a ResNet architecture, while the 
discriminator uses a PatchGAN model (illustrated in Figures 2a and 2b). 

 

Figure 02a - Steps applied to normalize illuminant source. Figure obtained from [11] 

 

Figure 02b - Light/Shadow correction to optimize image brightness. Figure obtained from [11] 

While color constancy has primarily been applied as a preprocessing method, Galdran et al. [12] 
introduced it as a dataset augmentation technique. After estimating the illuminant from a set of 
images, a random illuminant-corrected image can be adjusted using another randomly selected 
illuminant component, thereby generating a new variant. This process is illustrated in Figure 3. 
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Figure 03 - Color-casting of a white-balanced image with different illuminants. Image obtained from [12]  

3. METHODOLOGY 

We can implement color constancy algorithms either as a preprocessing technique [7,8], applying 
transformations to all samples before loading them into the training batch, or as an augmentation 
technique [12], where transformations are randomly applied on the fly to diversify the dataset 
during training. 

Since our scope includes clinical dermatology images, we aim to investigate how lighting 
conditions impact generalization across different datasets. We have chosen to assess color 
constancy as an augmentation rather than just a preprocessing step. We will evaluate the effects of 
incorporating color constancy as a complementary augmentation in our training pipeline, 
implemented in PyTorch¹. 

Our investigation focused on five color constancy techniques commonly used in dermatology, as 
referenced in [7, 8, 10]: Grey-World (1), max-RGB (2), Shades of Gray (3), General Grey-World 
(4), and Grey-edge (5). By integrating these methods, we can incorporate their functions into the 
training pipeline, which is based on torchvision.Compose². This allows us to apply custom 
sequential augmentations³ to the method's output before transforming it into torch tensors. 

As a baseline, we used various CNN architectures trained on the ISIC18 [13] dataset without 
applying color constancy, using only traditional augmentations as outlined in Figure 4. Next, we 
integrated color constancy with these augmentations for comparison. 
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Figure 04 - Augmentations used to train the BASE model variations. Image transformations from torchvision are used. 
We apply simple augmentation that does not alter semantic information of the images, mainly related to light and colors. 

Although ISIC18 is a dermoscopic dataset, primarily featuring images captured by specialized 
devices, it serves our purpose well by providing a controlled scenario for investigating the 
improvements color constancy can bring in addressing lighting artifacts. 

We trained 10 different architectures which includes different structures (i.e., convnext-tiny, 
convnext-small, convnext-base, densenet121, densenet161, densenet201, efficientNet-B0, 
ResNet101, ResNet152, InceptionV3). Architectures trained without color constancy are referred 
to as BASE_[M] where M is the architecture used on training, while COLOR_CONSTANCY_[M] 
refers to the same architecture but trained on color constancy.  

4. EXPERIMENTS AND DISCUSSIONS 

Testing Implementation 

We implemented the algorithms outlined in Equations 1–5 [8,10]. To validate the effectiveness of 
these transformations, we plotted the color distributions for both the original and corrected images. 
Examples of the Gray-World and Shades of Gray transformations can be seen in Figures 5a, 5b, 
and 5c. 

 
Figure 05a - Image samples obtained from original dataset, gray-world, and shades of gray from left to right, 

respectively. 
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Figure 05b - Scatter plot for color distribution to the original dataset, gray-world, and shades of gray, respectively. Each 
image was quantized to 25 colors, which were all plotted in this scatter. 

 

Figure 05c - Scatter plot for the estimated illuminants. Left shows the illuminant components for the gray world and the 
right for the shades of gray. 

 

Implementing as augmentations 

Since random augmentations are applied on the fly during training, we can effectively increase the 
number of images used by simply extending the number of epochs, as suggested by [12]. The 
augmentations implemented adhere to the methods outlined in Figure 4. 
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Figure 6 - The results from training and testing models are presented for both the baseline (BASE) and the models 
utilizing color constancy (COLOR_CONSTANCY). The top row displays the training loss and accuracy (from left to right), 

while the bottom row shows the validation loss and accuracy in the same order. For clarity in visualization, we have 
included only the most significant models that capture the overall experimental behaviors across different architectures. 

The results pertain to ResNet152, EfficientNet-B0, ConvNext-base, and DenseNet121. 

As shown in the results (Figure 6), color constancy did not significantly improve any metrics; in 
fact, it produced worse outcomes than the previous augmentations for most models. While 
preprocessing may create the appearance of similar images, this can hinder the models' ability to 
generalize and may prevent them from learning essential features and causing overfitting , 
decreasing the loss value quickly but not improving accuracy scores. Although color constancy is 
widely used in classical learning algorithms, it negatively impacts the generalization capacity of 
neural network-based models. 

Color constancy aims to normalize image attributes, which can be beneficial for hand-crafted 
features by adjusting them to align with the current distribution. However, when working with 
deeper models, we have less control over these adjustments. Our experiments confirm this 
observation. Consequently, alternative augmentation methods may be more suitable for clinical 
dermatology, as the color attributes in RGB images can significantly influence the models' 
accuracy. 

5. ACKNOWLEDGEMENTS 
 
This project was supported by the Ministry of Science, Technology and Innovation of Brazil, with 
resources from Law No. 8,248, dated October 23, 1991, under the scope of the PPI-SOFTEX, 
coordinated by Softex and published under Residência em TIC 13, DOU 01245.010222/2022-44. 
 

 

1. https://pytorch.org/ 
2. https://pytorch.org/vision/stable/index.html 
3. https://medium.com/@sergei740/simple-guide-to-custom-pytorch-transformations-d6bdef5f8ba2 

https://pytorch.org/
https://pytorch.org/vision/stable/index.html
https://medium.com/@sergei740/simple-guide-to-custom-pytorch-transformations-d6bdef5f8ba2


 

6. REFERENCES 

 

[1] Pinto-Coelho, Luís. "How artificial intelligence is shaping medical imaging technology: A survey of 
innovations and applications." Bioengineering 10.12 (2023): 1435. 

[2] Cai, Lei, Jingyang Gao, and Di Zhao. "A review of the application of deep learning in medical image 
classification and segmentation." Annals of translational medicine 8.11 (2020). 

[3] Chan, Heang-Ping, et al. "Deep learning in medical image analysis." Deep learning in medical image 
analysis: challenges and applications (2020): 3-21. 

[4] Wu, Eric, et al. "How medical AI devices are evaluated: limitations and recommendations from an 
analysis of FDA approvals." Nature Medicine 27.4 (2021): 582-584. 

[5] Tschandl, Philipp. "Risk of bias and error from data sets used for dermatologic artificial intelligence." 
JAMA dermatology 157.11 (2021): 1271-1273. 

[6] Goyal, Manu, et al. "Artificial intelligence-based image classification methods for diagnosis of skin 
cancer: Challenges and opportunities." Computers in biology and medicine 127 (2020): 104065. 

[7] Barata, Catarina, M. Emre Celebi, and Jorge S. Marques. "Improving dermoscopy image classification 
using color constancy." IEEE journal of biomedical and health informatics 19.3 (2014): 1146-1152. 

[8] Hua Ng, Jia, et al. "The effect of color constancy algorithms on semantic segmentation of skin lesions." 
Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. Vol. 
10953. SPIE, 2019. 

[9] KRIES, VON. "Influence of adaptation on the effects produced by luminous stimuli." handbuch der 
Physiologie des Menschen. 3 (1905): 109-282. 

[10] Van De Weijer, Joost, Theo Gevers, and Arjan Gijsenij. "Edge-based color constancy." IEEE 
Transactions on image processing 16.9 (2007): 2207-2214. 

[11] Salvi, Massimo, et al. "DermoCC-GAN: A new approach for standardizing dermatological images using 
generative adversarial networks." Computer Methods and Programs in Biomedicine 225 (2022): 107040. 

[12] Galdran, Adrian, et al. "Data-driven color augmentation techniques for deep skin image analysis." arXiv 
preprint arXiv:1703.03702 (2017). 

[13] Codella, Noel, et al. "Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the 
international skin imaging collaboration (isic)." arXiv preprint arXiv:1902.03368 (2019). 

 

 

 

 

1. https://pytorch.org/ 
2. https://pytorch.org/vision/stable/index.html 
3. https://medium.com/@sergei740/simple-guide-to-custom-pytorch-transformations-d6bdef5f8ba2 

https://pytorch.org/
https://pytorch.org/vision/stable/index.html
https://medium.com/@sergei740/simple-guide-to-custom-pytorch-transformations-d6bdef5f8ba2

	 
	1.INTRODUCTION 
	Color Constancy 

	2.RELATED WORKS 
	3.METHODOLOGY 
	4.EXPERIMENTS AND DISCUSSIONS 
	Testing Implementation 
	 

	Implementing as augmentations 

	6.REFERENCES 

