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1.​ INTRODUCTION 

Building on research into image-based artificial intelligence applied to clinical dermatology, it is 
essential to validate the input images before using them for diagnostic support. Through image 
segmentation or detection, we can isolate the area of interest corresponding to lesions in the 
images [1]. This approach filters out irrelevant information, focusing on critical regions that capture 
key lesion attributes.  
 
This report evaluates the leading methods for image segmentation and detection, analyzing their 
application in dermatology by processing datasets, annotations, and models. We focus on 
lightweight models [2,3,4,5] that are suitable for mobile applications, aligning with the requirements 
of our clinical use case. 
 

2.​ METHODOLOGY 

Image Segmentation 

To evaluate image segmentation in clinical dermatology, we employed the UNet [6] architecture, 
which is one of the most widely used frameworks for medical imaging tasks. Following the original 
design, we implemented the architecture in PyTorch, as illustrated in Figure 1. 
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Figure 01 - UNet architecture. Each blue box corresponds to a multi-channel feature map. White boxes represent copied 
feature maps. The arrows denote the different operations. Image obtained from [6] 

In the scope of this project, we aim to utilize the evaluated models in end-user applications to 
assist patients and generalist doctors prior to consultations with specialized dermatologists.  

Therefore, we also assessed the UNeXt model [2], illustrated in Figure 2, which is designed to 
operate on simpler devices, such as smartphones. The UNeXt architecture utilizes a tokenized 
MLP structure, enabling the shifting of previous activations and reducing the feature maps passed 
through the network. By incorporating tokens, the model becomes simpler, yet it demonstrates the 
ability to maintain accuracy, even surpassing the original UNet model. We then compared the 
results obtained from both the UNet and UNeXt models, focusing on accuracy and execution 
performance.  

 

Figure 02 - UNeXt architecture. Image obtained from [2]  
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The primary task is to perform image segmentation; however, few datasets provide this information 
due to the extensive annotation effort required and the need for validation by specialists. Figure 3 
shows an example of image segmentation ground truth from the ISIC18 dataset [11]. Fortunately, 
the ISIC challenges up until 2018 included segmentation masks alongside their respective color 
images. Thus, we utilized the most recent version of the dataset (ISIC18) to train and validate our 
models. As this dataset is widely referenced in the literature, including in the original UNet and 
UNeXt papers, it allows us to test and compare our implementation with the original reported 
models. 

 

Figure 3 - Example of ISIC18 samples for the segmentation task. Image obtained from [11]. 

Object Detection 

Due to the limited data available for lesion segmentation, we also evaluated various object 
detection architectures to detect skin lesions in images. Detection only requires an approximate 
target area, allowing us to leverage annotations from different datasets with less specialized 
validation. Additionally, many object detection architectures are optimized for execution 
performance and can run on simple mobile devices, aligning with our objective. Also, we extend 
segmentation labels by taking the maximum and minimum mask’s coordinates in the image to draw 
the lesions bounding box used in detection training. 

We tested the recent YOLOv7 detection architecture [3], a leading state-of-the-art approach, and 
compared it to detection models based on MobileNetV2, MobileNetV3, [4,5] and EfficientDet 
variants [7]. 

Since detection labels are more commonly available than segmentation masks, we could utilize 
multiple datasets provided through the RoboFlow API¹, which are licensed for research use. By 
implementing these detection strategies, we can use the segmentation or detection model as a 
filter to accept or reject images based on the presence of skin lesions, enabling more focused 
classification in subsequent steps. 

Given that we are working with dermatology images in clinical settings, we incorporated variations 
by validating the use of augmentations to enhance model generalizability across diverse 
challenges, including capture blur, lighting conditions, and image noise. Finally, we converted the 
trained models to ONNX² format, allowing them to be deployed in our mobile application using 
TFLite³ for efficient inference. 
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Metrics 

To evaluate model performance in image segmentation, we use the Intersection over Union (IoU) 
score [8], a widely applied metric in detection and segmentation tasks. IoU measures the overlap 
ratio between ground truth labels and predicted values, quantifying the intersection between the 
ground truth mask and the predicted mask. Additionally, we report the Dice score [9] for 
segmentation, which is conceptually similar to IoU but incorporates the size of the sets, normalizing 
the score to account for the relative sizes of elements. For both IoU and Dice scores, higher values 
indicate better performance. 

For detection tasks, we evaluate performance using mean Average Precision (mAP) [10], 
calculated over the IoU score. Since detection models generate multiple bounding boxes, mAP 
computes the mean precision values for predictions that closely align with the ground truth. While 
segmentation and detection scores (e.g., pure IoU vs. mAP) cannot be directly compared, mAP 
provides a reasonable approximation for assessing the effectiveness of detection techniques 
relative to segmentation methods. 

 

3.​ EXPERIMENTS AND DISCUSSIONS 

Image Segmentation - UNet and UNeXt comparison 

Table 1 - Image segmentation results on ISIC18 for UNet and UNeXt. 

Model 
Reported 
Accuracy 

(IoU) 

Obtained 
Accuracy 

(IoU) 

Obtained 
Accuracy 

(DICE) 
Inference 

time 
Weight size 

(MB) 

UNet 0.7455 0.7168 0.7163 13.21s (CPU) 
08.80s (GPU) 1.40MB 

UNeXt 0.8170 0.7870 0.8716 110ms (CPU) 
5.6ms  (GPU) 5.9MB 

 
As shown in table 1, the achieved accuracy is comparable to the results reported in the reference 
works. UNeXt outperforms UNet in terms of accuracy and offers faster runtime, despite having 
larger weights. Both networks demonstrate accuracy close to state-of-the-art, but UNet requires 
longer inference times on a CPU, making it less suitable for mobile applications. Besides the use of 
MLP, which increases UNeXt's storage size, it enhances performance of operations and improves 
network inference efficiency. While segmenting lesion areas can be highly valuable, only a few 
datasets provide segmentation masks suitable for training. Within the scope of ISIC18 
(dermoscopic images), model inference performs adequately. However, when tested qualitatively 
on a clinical dataset aligned with our final application, the results were less satisfactory. As shown 
in Figure 4 and 5, the predicted masks do not perform as well as those on dermoscopic data like 
ISIC18.To address this limitation, we can extend the model's knowledge through fine-tuning on 
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clinical datasets. However, this requires the availability of clinical segmentation masks during 
training, which is essential for improving performance in real-world clinical scenarios. 
 

 
Figure 4 - Segmentation results on ISIC18 dermoscopic dataset. 

 

 
Figure 5 - Segmentation results on derm7pt clinical dataset. 

Datasets merge and conversion for object detection 

As mentioned before, segmentation dataset is limited and acquiring mask labels is a cumbersome 
task. Thus, to improve model training on the lesions localization, we collected publicly available 
datasets containing bounding box annotations for image detection. These annotations enabled us 
to train lesion detection models using images from multiple sources. The following datasets were 
downloaded and merged: 
 
1.​ Skin Cancer Computer Vision Project 

(https://universe.roboflow.com/skin-cancer-yp3qt/skin-cancer-svnul), 
  5 classes, 5220 images, license CC BY 4.0 

2.​ Melanoma cancer Computer Vision Project 
(https://universe.roboflow.com/universitas-islam-nahdlatul-ulama/melanoma-cancer), 3 
classes, 225 images, license CC BY 4.0 

3.​ Kuchbhe Computer Vision Project 
(https://universe.roboflow.com/hasnain-uhyxo/kuchbhe), 7 classes, 1486 images, 
license ODbL v1.0 

4.​ Zq Computer Vision Project (https://universe.roboflow.com/shizhen/zq-uqc77), 7 
classes, 3983 images, license CC BY 4.0 
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5.​ Melanoma Detection Computer VIsion Project 

(https://universe.roboflow.com/wayamba/melanomadetection-l1n4s), 2 classes, 2051 
images, license CC BY 4.0 

 
By consolidating these datasets, we aimed to create a robust training set, ensuring diversity in 
image sources, lesion types, and demographic characteristics. This allows for the development of 
models capable of detecting lesions across different contexts while increasing the number of 
samples to enhance training. Since a single dataset is often insufficient to effectively adjust model 
parameters, combining multiple datasets ensures better generalization and robustness. 
 
To focus on detecting lesion boundaries, we simplified the classification task into two classes. This 
binary classification approach helps in the detection process, concentrating the model's efforts on 
distinguishing lesion-containing regions from non-lesion areas. It ensures that the model learns to 
detect boundaries accurately, regardless of lesion type or dataset source. 

Applying Augmentations 

As  described in the report “Data Pre-processing and Augmentation on Dermoscopy Images for 
Skin Lesion Classification” [12], we experimented with various augmentation techniques to 
enhance generalization in dermatology classification tasks. Building on this approach, we applied 
these techniques to lesion detection, adapting and expanding operations to optimize performance 
for detection models (Figure 6). 
 

 
Figure 6 - Augmentation applied on detection training 

 
In the additional processing, we applied cropping at various image scales to avoid bias toward 
detecting lesions of specific sizes. We also introduced positional shifts in bounding box annotations 
and resized the input images using bilinear interpolation. For training, 80% of the samples were 
used, with the remaining 20% evenly split into 10% for validation and 10% for testing. 
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Testing and comparing Detection architectures 

As shown in Table 2, we trained and tested various architectures on ISIC18. YOLOv7 achieved the 
highest mAP scores among the evaluated models. However, other architectures, such as SSD 
MobileNet, offer advantages in terms of storage size and inference speed. SSD MobileNet, for 
instance, sacrifices only 3 percentage points in mAP compared to YOLOv7 but reduces storage 
requirements by more than half. This makes it a strong candidate for scenarios where inference 
performance and resource efficiency are critical, such as mobile applications. Balancing detection 
accuracy with hardware constraints, SSD MobileNet is particularly suitable for lightweight, 
on-device processing. 

We emphasize the critical role of data augmentation in this context. When working with small 
datasets, training solely on the original images often leads to early overfitting, severely limiting the 
model's generalization capabilities. In our experiments, training without augmentation resulted in 
detection scores between 0.01 and 0.05 mAP. However, using the same setup with data 
augmentation significantly improved the results, achieving mAP values in the range of 0.4 to 0.6. 
This demonstrates that augmentation is essential for enhancing performance and mitigating the 
challenges posed by limited datasets. 

 
 

Table 2 - Detection score training different networks. 

Model mAP Size (Float32) Size (Float16) 

YoloV7 0.601 146MB 73.1MB 

SSD MobileNetV1 0.572 26.3MB 13.2MB 

SSD MobileNet lite V2 0.532 12.2MB 6.1MB 

EfficientDet lite0 0.585 4.4MB - 

 

Fine-Tuning detectors on different datasets 

We evaluated the impact of merging datasets and applying fine-tuning to tailor the model to 
specific scenarios. The YOLOv7 model was tested on a subset of approximately 200 images 
collected from Hospital das Clínicas UFPE (HC-UFPE) with bounding boxes annotated by doctors 
and medicine students. Due to the limited size of the HC-UFPE dataset, it was insufficient for 
standalone training, resulting in a low mean average precision (mAP) of 0.04. By combining the 
HC-UFPE dataset with the Skin Cancer Computer Vision Project dataset, the mAP improved to 
0.247 for multiclass detection, where each lesion type was detected individually. When simplifying 
the task to binary detection (positive/negative cases), the combined datasets yielded a mAP of 
0.519. Finally, merging all available samples from multiple sources significantly boosted detection 
performance on the HC-UFPE dataset, achieving a mAP of 0.834. This demonstrates the 
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effectiveness of our data-merging approach. By integrating data from sources, we enhanced model 
generalization and provided sufficient samples for training a robust lesion detection model. 

 

Model mAP 

1 Dataset multiclass (HC) 0.04 

Merging 2 datasets multiclass (HC + Skin Cancer) 0.247 

Merging 2 datasets 1 class (positive/negative) 0.519 

Merging all data 1 class (positive/negative) (HC + all) 0.834 

 

Converting model and using on mobile 

Finally, we deployed our best detection model on a mobile application to identify and mark lesions 
in smartphone images [13]. Using the trained YOLOv7 architecture, we converted the model with 
the LiteRT framework, enabling its integration into a REACT/TFLite-based application. Since the 
model was initially trained in PyTorch, it was crucial to ensure proper channel order during 
conversion, as PyTorch uses a channel-first format while TensorFlow employs a channel-last 
representation. We provided three versions of the model, differentiated by operand precision: int8, 
float16, and float32. The lightweight nature of the model made it feasible to use the half-precision 
(float16) version, achieving a good balance between performance and efficiency on mobile 
devices. Table 4 below summarizes the model's overall performance when tested on images from 
the HC-UFPE. A qualitative visualization of the detection results is illustrated in Figure 6. 

Table 4 - Result of detection model running in smartphone 

Metric Score 

Number of images 205 

Inference time (mean) 1.13s 

Correct detections (IoU >.5) 143 

Incorrect detections (IoU <= .5) 90 

False negatives 15 

Accuracy 0.62 

Precision 0.90 

Recall 0.68 

F1-Score 0.78 
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Figure 7 - Visualization of detections running in mobile 
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