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1.​ INTRODUCTION 

With recent advancements in AI, various learning-based models are increasingly being applied to 
medical imaging [1]. By evaluating classification approaches [2] and pre-processing techniques [3], 
we explored how these methods can be utilized in clinical dermatology, specifically focusing on 
deep supervised architectures. Recently, large models like transformers have been proposed for 
image classification tasks [4]. Although originally designed for natural language processing (NLP) 
[5], these architectures have been adapted for image-based tasks [6], leveraging their 
self-attention mechanisms to focus on critical local features within an image. 

In dermatology, the local attributes of lesions often hold essential information for accurate 
diagnosis. To address this, we aim to apply and compare transformer-based architectures within 
the clinical dermatology context [6,7,8,9,10,11]. Specifically, we evaluate these attention-based 
networks against previously trained classification architectures [2,12,13,14,15]. 

Additionally, we investigate the use of AI-generated images to augment the training of these 
models [16]. Since transformers require a significant amount of data due to their large number of 
parameters, the limited size of dermatology datasets poses a challenge. To mitigate this, we 
supplement training with images generated using Stable Diffusion and compare the performance of 
different training strategies. 

 



 

2.​ METHODOLOGY 

Previously, we assessed and validated the use of CNN architectures in dermatology [2], testing 
models on public dermoscopic and clinical datasets. By experimenting with various architectures 
such as ConvNext [13], ResNet [14], DenseNet [15], and EfficientNet [12], we gained insights into 
how different models perform under varying challenges in clinical dermatology. Additionally, by 
evaluating preprocessing techniques [3], we identified strategies to address challenges in diverse 
testing scenarios. To build on these analyses, we now aim to evaluate how the latest 
transformer-based architectures can tackle the complex task of identifying skin lesions. Specifically, 
we trained with the transformer architectures: ViT [6], SWin Transformer [7], EVA-02 [8], 
EdgeNeXT [9], Deit III [10], and Beit v2 [11]. 

We utilized various representative transformer and convolutional architectures to establish a robust 
foundation for comparison. Furthermore, we conducted experiments using synthetically generated 
malignant images created with Stable Diffusion [16]. By gradually increasing the ratio of real to 
synthetic malignant images in the dataset, we gained valuable insights into the impact of synthetic 
data on model performance. 

In our experiments, we utilized the recently released ISIC24 clinical dataset [17], which comprises 
401,059 samples. The most significant challenge posed by ISIC24 is its extreme class imbalance: 
only 393 images are positive samples (malignant lesions), while 400,666 are negative (benign 
lesions). This represents an almost 1:1000 ratio, making it particularly difficult to develop a reliable 
model with such limited positive data. However, overcoming this challenge is crucial as it reflects 
the type of disparities commonly encountered in real-world scenarios, including the multiclass 
imbalances in our own dataset. 

To address the extreme class imbalance in the ISIC24 dataset, we implemented the following 
strategies: 

1.​ Balanced Batches: For each training iteration, we ensured that batches were balanced by 
including a proportional representation of positive and negative samples. Given the limited 
number of 393 positive images, many were repeated across iterations and epochs. This 
effectively acts as a simple oversampling method for the positive class. 

2.​ Negative Class Downsampling: We reduced the number of negative samples in the 
training set to mitigate the class imbalance and allow the model to focus more on learning 
from the underrepresented positive class. 

3.​ Synthetic Image Generation: To augment the training data, we generated approximately 
6,000 synthetic malignant images using a Stable Diffusion model fine-tuned on ISIC24's 
malignant image subset. These synthetic images were gradually introduced into the training 
set during experiments to assess their impact on model performance. For more details on 
the fine-tuning process, refer to our sprint review or the wandb fine-tuning logs. 

 

 



 

Baseline and augmentations 

As baseline we applied a simple pipeline on ISIC24 as it is, using a shuffled data loader. 

●​ Augmentation: Simple Random Horizontal Flip 
●​ Single Positive images (for training): ~294 
●​ Single Negative images (for training): ~300500 

New augmentation pipeline on ISIC24 using a balanced data loader, based on previous research 
[2,3]. 

Each batch received the same amount of negative/positive images, essentially repeating the 
positive ones (i.e a 1024 batch has 512 negative and 512 negatives; 512 - 393 = 119 positive 
images were repeated) (Figure 1) 

●​ Single Positive images (for training): ~294 
●​ Single Negative images (for training): ~300500 

 

Figure 1 - Augmentations applied on ISIC24 

In addition to data augmentation, we evaluated various batch compositions to address the class 
imbalance in the ISIC24 dataset. Table 1 provides an overview of the data distribution for each 
training set configuration. Balanced + Augmentation maintains the original class proportion by 
applying strong augmentations to negative samples, effectively balancing the dataset. Balanced 
Downsampled achieves a similar balance by reducing the number of negative samples while 
applying augmentation. Super-Downsampled adjusts class proportions of the original dataset and 
applies augmentation equally to both negative and positive samples to improve representation. 
Additionally, we tested various proportions of synthetic and real images, using Stable 

 



 

Diffusion-generated images to enhance the representation of negative samples in the ISIC24 
dataset (Table 2). 

Table 1 - Training distributions on ISIC24 

 Default Balanced + 
aug 

Balanced 
downsampled 

super- 
downsampled 

Positive (malignant) 294 294 296 303 

Negative (benign) 300500 300500 1803 600 

 

Table 2 - Training distributions using synthetic images from stable diffusion 

 synthetic 1:1 Synthetic 1:3 Synthetic 1:15 Synthetic only 

Positive (malignant) 303 189 43 0 

Positive synthetic 303 567 645 5971 

Negative synthetic 1800 800 680 6000 

 

3.​ EXPERIMENTS AND DISCUSSIONS 

Generated images 

As mentioned earlier, we used Stable Diffusion-generated images to enhance the dataset's 
representation of malignant samples. Figures 2 and 3 illustrate examples of AI-generated images 
simulating skin lesions. For the input prompt, we instructed the model to generate images of 
"Malignant skin lesions." 

 

Figure 3 - AI generated images of “Malignant Skin lesions” 

 



 

 

Figure 4 - Resulting images after running for 50 epochs 

Scores Transformers vs CNNs 

Convolutional and transformer-based architectures delivered very similar results. Swin Transformer 
models occasionally exhibited fluctuations in metrics, suggesting that the optimizer might have 
been trapped in a local minimum. Similar behavior was observed in other architectures, likely due 
to the warmup phase. The EdgeNeXT consistently outperformed most other models, including 
convolutional ones, in the majority of experiments. Convolutional architectures demonstrated faster 
convergence across epochs compared to transformer-based models. This is likely due to the 
"data-hungry" nature of transformer backbones, which require more data and have higher 
parameter counts and complexity. The overall accuracy on the test and validation set is illustrated 
in Figure 4. 

 

Figure 4 - Scores of CNNs and transformers models executed on ISIC24 test set 

Figure 5 illustrates an example of how transformer models focus on local attributes. The heatmaps 
of the EfficientNet and ViT networks, based on activations generated from an input image, highlight 
the regions influencing the model's prediction. Transformers tend to prioritize local features, 

 



 

concentrating activations on the lesion area. In contrast, CNNs extract more general features by 
considering the global context, allowing surrounding areas to influence the model's decision. 
Future research could explore integrating the local focus of transformers with the broader 
contextual understanding of CNNs to combine the strengths of both approaches in analyzing 
image attributes. 

 

Figure 5 - Activation maps of EfficientNet (middle row) and ViT (bottom row). The red areas indicate the most relevant regions 
that contribute to the model's decision for the predicted class. 

Initializing on synthetic images 

Experiments revealed a clear trend: as the proportion of synthetic images increased, validation 
metrics generally declined. This behavior is illustrated in Figure 6. Models trained with synthetic 
data achieved higher Recall, which is particularly valuable in health-related applications where 
minimizing false negatives is critical. A 1:1 ratio of synthetic to real images yielded promising 
results, achieving comparable performance to models trained without synthetic data while 
improving metrics like Recall and F1-score. Models trained with synthetic data tended to converge 
faster but exhibited poorer validation metrics, potentially indicating overfitting. This may suggest 
that the generated images lacked sufficient diversity. 

 

Figure 6 - Network scores varying synthetic distribution 

 



 

 

Public set ISIC24 

As an additional experiment, we tested our variations of transformers and CNNs on the ISIC24 
Challenge test set (Table 3). We evaluated the models on both the public and test sets, comparing 
the performance of different architectures and varying proportions of synthetic samples. Scores 
were computed using the challenge's specific metric [17]: only predictions with an AUC > 0.8 
contribute to the final score, which ranges from 0.0 to 0.2, with higher values indicating better 
performance. These results allowed for a comparison with competing methods and confirmed 
trends observed in our previous experiments, reinforcing our conclusions. 

Table 3 - Results on ISIC24 test set 

Modelo Variação de 
treinamento 

Private Score 
(pAUC 0.8) 

Public 
Score 

(pAUC 0.8) 

EdgeNeXt Base superdownsampled 0.127 0.149 

EdgeNeXt Base real/synthetic 1:1 0.048 0.049 

EdgeNeXt Base real/synthetic 1:3 0.123 0.135 

EdgeNeXt Base real/synthetic 1:15 0.044 0.040 

EdgeNeXt Base synthetic only 0.026 0.025 

EfficientNet B0 superdownsampled 0.110 0.128 

EfficientNet B0 real/synthetic 1:1 0.085 0.085 

EfficientNet B0 real/synthetic 1:3 0.092 0.112 

EfficientNet B0 real/synthetic 1:15 0.093 0.095 

EfficientNet B3 synthetic only 0.060 0.060 

Ensemble of highlighted models (bold)  0.130 0.147 

 

Preliminary Conclusions 

These findings highlight the need for further research into different architectures for classification 
and synthetic image generation in dermatology. Our approach used synthetic images for training 
and real images for evaluation, as this was the only viable method available at the time, apart from 

 



 

expert dermatological assessment. Enhancing the diversity and quality of synthetic images is 
crucial to maximizing their potential in medical AI applications. 

However, we can further explore and evaluate alternative training strategies for transformers by 
leveraging advancements in synthetic data generation techniques. For instance, distinguishing 
between different classes of malignant and benign lesions could help reduce intra-class feature 
variability. Additionally, optimizing proprietary diffusion models tailored specifically for 
dermatological images could yield better results, as Stable Diffusion is primarily optimized for 
generating general-purpose images rather than medical-specific data. 

Full metrics report are available at:  

https://wandb.ai/tic13/transformers/reports/Transformers-vs-Convolutional-performance-on-real-an
d-synthetic-ISIC24--VmlldzoxMDAyMDY0OA?accessToken=dudlz99gq13ls4b33kkmtly0nr79wydsl
8165e8d848va7tnijcrmfw4k106ou9f 
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